

(according to regulation EU No 305/2011)

No. AMDG-2/01-CPR-13-1

1) Code of the product type: 1.0038

2) Type: Sections/Bars S235JR according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Essential characteristic			Pe	erformance	Harmonised technical specification
Tolerances on		Angles	EN10056-2		
dimensions and shape		I and H sections	1	EN 10034	
		Tapered Flange I	1	EN 10024	
		UPE, UPN	I	EN 10279	
	Flat / S	Square / Round / T bars	EN 10058/EN 10	059/EN 10060/EN 10055	
Yield strength	Nom	inal thickness (mm)	Va	lues (MPa)	
_	>	≤		min	
		16		235	
	16	40		225	
	40	63			
	63	80		215	
	80	100			
	100	140		195	
Tensile strength	Nom	inal thickness (mm)	Va	lues (MPa)	
_	>	≤	min	max	
	=3	100	360	510	
	100	140	350	500	
Elongation	Nom	inal thickness (mm)	Values (%)		
	>	≤		min	EN 10025-1:2004
	=3	40	26		
	40	63		25	
	63	100		24	
	100	140		22	
Impact strength	Nom	inal thickness (mm)	\	/alues (J)	
	>	≤		min	
		140		7 at +20℃	
Weldability	Nom	inal thickness (mm)	V	alues (%)	
	>	≤		max	
		30		0,35	
	30	40		0,35	
	40	140		0,38	
Durability	Nom	inal thickness (mm)	V	alues (%)	
(Chemical composition)	>	≤		max	
		140	C*: 0,17	Cu : 0,55	
			Mn: 1,40	S: 0,040	
			P: 0,040	N** : 0,012	
	* For nomin				
	content of (. value for nitrogen does not apply 0,020% or if sufficient other N bind	, ii ii ie cnemicai composi ling elements are presen	uon snows a minimum total Al	

(according to regulation EU No 305/2011)

No. AMDG-2/02-CPR-13-1

1) Code of the product type: **1.0114**

2) Type: Sections/Bars S235J0 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Date: 01.07.2013

					Specification
Tolerances on		Angles	E	N10056-2	
dimensions and shape		I and H sections	E	EN 10034	
		Tapered Flange I	EN 10024		
		UPE, UPN	EN 10279		
	Flat /	Square / Round / T bars	EN 10058/EN 10	059/EN 10060/EN 10055	
Yield strength	No	minal thickness (mm)	Va	lues (MPa)	
	>	≤ , , ,		min	
		16		235	
	16	40		225	
	40	63			
	63	80		215	
	80	100			
	100	140		195	
Tensile strength	No	minal thickness (mm)	Va	lues (MPa)	
	>	≤	min	max	
	=3	100	360	510	
	100	140	350	500	
Elongation	No	minal thickness (mm)	V	alues (%)	
	>	≤		min	EN 10025-1:2004
	=3	40		26	
	40	63		25	
	63	100		24	
	100	140		22	
Impact strength	No	minal thickness (mm)	\	/alues (J)	
	>	≤		min	
		140		27 at 0℃	
Weldability	No	minal thickness (mm)	V	alues (%)	
	>	≤		max	
		30		0,35	
	30	40	0,35		
	40	140	0,38		
Durability		minal thickness (mm)	Values (%)		
(Chemical composition)	>	≤		max	
		140	C*: 0,17	Cu: 0,55	
			Mn : 1,40	S: 0,035	
			P: 0,035	N** : 0,012	
		ninal thickness >100 mm: C content ax. value for nitrogen does not apply		tion shows a minimum total AI	
		f 0,020% or if sufficient other N bind			
					

Performance

Essential characteristic

Harmonised

technical specification

(according to regulation EU No 305/2011)

No. AMDG-2/03-CPR-13-1

1) Code of the product type: **1.0117**

2) Type: Sections/Bars S235J2 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Essential characteristic		Perf	ormance	Harmonised technical specification	
Tolerances on	Angles		EN10056-2		
dimensions and shape		I and H sections	EN	10034	
		Tapered Flange I		10024	
		UPE, UPN	EN	10279	
	Flat /	Square / Round / T bars	EN 10058/EN 1005	59/EN 10060/EN 10055	
Yield strength	Noi	minal thickness (mm)	Valu	es (MPa)	
· ·	>	≤ , , ,		min	
		16		235	
	16	40		225	
	40	63			
	63	80		215	
	80	100			
	100	140		195	
Tensile strength	Noi	minal thickness (mm)	Valu	es (MPa)	
	>	≤	min	max	
	=3	100	360	510	
	100	140	350	500	
Elongation	Noi	minal thickness (mm)	Values (%)		
	^	VI		min	
	=3	40		26	EN 10025-1:2004
	40	63		25	
	63	100		24	
	100	140		22	
Impact strength	No	minal thickness (mm)	Val	ues (J)	
	>	≤		min	
		140		at -20℃	
Weldability	No	minal thickness (mm)	Val	ues (%)	
	>	≤		max	
		30		0,35	
	30	40		0,35	
	40	140		0,38	
Durability	No	minal thickness (mm)	Values (%)		
(Chemical composition)	>	≤		max	
		140	C*: 0,17	Cu: 0,55	
			Mn : 1,40	S: 0,030	
			P: 0,030		
* For nominal thickness >100 mm: C content upon agreement. Fully killed steel containing nitrogen binding element in amounts sufficient to bind the available nitrogen					
(for example min. 0,02% AI)					

(according to regulation EU No 305/2011)

No. AMDG-2/04-CPR-13-1

1) Code of the product type: **1.0044**

2) Type: Sections/Bars S275JR according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Lay Mideely

Essential characteristic			Pe	erformance	Harmonised technical specification
Tolerances on	Angles		E	EN10056-2	
dimensions and shape		and H sections	I	EN 10034	
	Т	apered Flange I	I	EN 10024	
		UPE, UPN	i i	EN 10279	
	Flat / S	quare / Round / T bars	EN 10058/EN 10	0059/EN 10060/EN 10055	
Yield strength	Nomi	nal thickness (mm)	Va	lues (MPa)	
	>	≤		min	
		16		275	
	16	40		265	
	40	63		255	
	63	80		245	
	80	100		235	
	100	140		225	
Tensile strength	Nomi	inal thickness (mm)	Va	lues (MPa)	
	^	≤	min	max	
	=3	100	410	560	
	100	140	400	540	
Elongation	Nomi	inal thickness (mm)	Values (%)		
	>	≤		min	EN 10025-1:2004
	=3	40		23	
	40	63		22	
	63	100		21	
	100	140		19	
Impact strength	Nomi	inal thickness (mm)	\	/alues (J)	
	>	≤		min	
		140		7 at +20℃	
Weldability		nal thickness (mm)	V	alues (%)	
	>	≤		max	
		30		0,40	
	30	40		0,40	
	40	140	0,42		
Durability	1	nal thickness (mm)	V	alues (%)	
(Chemical composition)	>	<u>≤</u>	0* 0.04	max	
		140	C*: 0,21	Cu: 0,55	
			Mn : 1,50	S: 0,040	
	+ =	146-1	P: 0,040	N** : 0,012	
		al thickness > 40 mm C: 0,22. For value for nitrogen does not apply) mm: C content upon agreement tion shows a minimum total AI	
		,020% or if sufficient other N bind			

(according to regulation EU No 305/2011)

No. AMDG-2/05-CPR-13-1

1) Code of the product type: 1.0143

2) Type: Sections/Bars S275J0 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

lay Mideely

Essential characteristic			Per	rformance	Harmonised technical specification
Tolerances on		Angles	EN10056-2		
dimensions and shape		I and H sections	Е	N 10034	
		Tapered Flange I	E	N 10024	
		UPE, UPN	E	N 10279	
	Flat /	Square / Round / T bars	EN 10058/EN 100	059/EN 10060/EN 10055	
Yield strength	Non	ninal thickness (mm)	Val	ues (MPa)	
	>	≤		min	
		16		275	
	16	40		265	
	40	63		255	
	63	80		245	
	80	100		235	
	100	140		225	
Tensile strength	Non	ninal thickness (mm)	Val	ues (MPa)	
	>	≤	min	max	
	=3	100	410	560	
	100	140	400	540	
Elongation	Non	ninal thickness (mm)	Values (%)		
	>	≤		min	EN 10025-1:2004
	=3	40		23	
	40	63		22	
	63	100		21	
	100	140		19	
Impact strength	Non	ninal thickness (mm)	V	alues (J)	
	>	≤		min	
		140		?7 at 0℃	
Weldability		ninal thickness (mm)	Va	alues (%)	
	>	≤		max	
		30		0,40	
	30	40		0,40	
	40	140		0,42	
Durability		ninal thickness (mm)	Va	alues (%)	
(Chemical composition)	>	≤	0* 0.40	max	
		140	C*: 0,18	Cu: 0,55	
			Mn : 1,50	S: 0,035	
	* For no :::	nel thistograp - 100 mm, Ctt	P: 0,035	N** : 0,012	
		nal thickness >100 mm: C content x. value for nitrogen does not apply		on shows a minimum total AI	
content of 0,020% or if sufficient other N binding elements are present					

(according to regulation EU No 305/2011)

No. AMDG-2/06-CPR-13-1

1) Code of the product type: **1.0145**

2) Type: Sections/Bars S275J2 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk
Head of Quality Control –

Jay Mideely

Essential characteristic			Per	formance	Harmonised technical specification
Tolerances on		Angles	EN	l10056-2	
dimensions and shape		I and H sections	EI	N 10034	
		Tapered Flange I	El	N 10024	
		UPE, UPN		N 10279	
	Flat /	Square / Round / T bars	EN 10058/EN 100	59/EN 10060/EN 10055	
Yield strength	Nor	ninal thickness (mm)	Valu	ues (MPa)	
	>	≤		min	
		16		275	
	16	40		265	
	40	63		255	
	63	80		245	
	80	100		235	
	100	140		225	
Tensile strength	Nor	ninal thickness (mm)	Valu	ues (MPa)	
	>	≤	min	max	
	=3	100	410	560	
	100	140	400	540	
Elongation	Nor	ninal thickness (mm)	Values (%)		
	>	≤		min	EN 10025-1:2004
	=3	40		23	
	40	63		22	
	63	100		21	
	100	140		19	
Impact strength	Nor	ninal thickness (mm)	Va	alues (J)	
	>	≤		min	
		140		at -20℃	
Weldability	Non	ninal thickness (mm)	Va	lues (%)	
	>	≤		max	
		30		0,40	
	30	40		0,40	
	40	140		0,42	
Durability	Nor	ninal thickness (mm)	Va	lues (%)	
(Chemical composition)	>	≤		max	
		140	C*: 0,18	Cu : 0,55	
			Mn : 1,50	S:0,030	
			P: 0,030		
		nal thickness >100 mm: C content		ent to hind the available nitrogen	
Fully killed steel containing nitrogen binding element in amounts sufficient to bind the available nitrogen (for example min. 0,02% AI)					

(according to regulation EU No 305/2011)

No. AMDG-2/07-CPR-13-1

1) Code of the product type: **1.0045**

2) Type: Sections/Bars S355JR according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A.
al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland
Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Essential characteristic		Perf	ormance	Harmonised technical specification	
Tolerances on		Angles	EN10056-2		
dimensions and shape		I and H sections	EN	V 10034	
		Tapered Flange I	EN	N 10024	
		UPE, UPN	EN	l 10279	
	Flat /	Square / Round / T bars	EN 10058/EN 100	59/EN 10060/EN 10055	
Yield strength	No	minal thickness (mm)	Valu	es (MPa)	
	>	≤		min	
		16		355	
	16	40		345	
	40	63		335	
	63	80		325	
	80	100		315	
	100	140		295	
Tensile strength	No	minal thickness (mm)	Valu	es (MPa)	
	>	≤	min	max	
	=3	100	470	630	
	100	140	450	600	
Elongation	No	minal thickness (mm)	Values (%)		
	>	≤		min	
	=3	40		22	EN 10025-1:2004
	40	63		21	
	63	100		20	
	100	140		18	
Impact strength	No	minal thickness (mm)	Va	lues (J)	
	>	≤		min	
		140		at +20℃	
Weldability	No	minal thickness (mm)	Val	ues (%)	
	>	≤		max	
		30		0,45	
	30	40		0,47	
	40	140	0,47		
Durability		minal thickness (mm)	Values (%)		
(Chemical composition)	>	≤		max	
		140	C*: 0,24	Cu: 0,55	
			Si: 0,55	S: 0,040	
			Mn : 1,60	N**: 0,012	
			P: 0,040		
* For nominal thickness >100 mm: C content upon agreement. ** The max. value for nitrogen does not apply if the chemical composition shows a minimum					
	content o	f 0,020% or if sufficient other N bind	ing elements are present	51545 a minimum total Al	

(according to regulation EU No 305/2011)

No. AMDG-2/08-CPR-13-1

1) Code of the product type: **1.0553**

2) Type: Sections/Bars S355J0 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Essential characteristic			Perfor	mance	Harmonised technical specification
Tolerances on		Angles	EN10056-2		
dimensions and shape		I and H sections	EN 1	0034	
		Tapered Flange I	EN 1	0024	
		UPE, UPN	EN 1	0279	
	Flat /	Square / Round / T bars	EN 10058/EN 10059/	EN 10060/EN 10055	
Yield strength	Nor	minal thickness (mm)	Values	(MPa)	
	>	≤	m	in	
		16	35	55	
	16	40	34	! 5	
	40	63	33	35	
	63	80	32		
	80	100	31	5	
	100	140	29	95	
Tensile strength	Nor	minal thickness (mm)	Values	(MPa)	
	>	≤	min	max	
	=3	100	470	630	
	100	140	450	600	
Elongation	Nominal thickness (mm)		Value	s (%)	
	>	≤	min		=
	=3	40	22		EN 10025-1:2004
	40	63	2	·	
	63	100	2		
	100	140	1	•	
Impact strength	Nor	ninal thickness (mm)	Value	- \-/	
	>	≤	m		
		140	27 at		
Weldability	ION	ninal thickness (mm)	Value	s (%)	
	>	≤	ma		
		30	0,4		
	30	40	0,4		
	40	140	0,4		
Durability	ION	minal thickness (mm)	thickness (mm) Values (%)		
(Chemical composition)	>	≤	ma		
		140	C*: 0,20	Cu: 0,55	
			Si: 0,55	S: 0,035	
			Mn : 1,60	N**: 0,012	
			P: 0,035		
		inal thickness > 30 mm C: 0,22. For x. value for nitrogen does not apply			
		0,020% or if sufficient other N bind		iows a minimum total Al	

(according to regulation EU No 305/2011)

No. AMDG-2/09-CPR-13-1

1) Code of the product type: **1.0577**

2) Type: Sections/Bars S355J2 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk
Head of Quality Control –

Mideelyl

Essential characteristic			Perfor	rmance	Harmonised technical specification
Tolerances on		Angles	EN10	0056-2	
dimensions and shape		I and H sections	EN 1	10034	
		Tapered Flange I	EN 1	10024	
		UPE, UPN	EN 1	10279	
	Flat /	Square / Round / T bars	EN 10058/EN 10059	/EN 10060/EN 10055	
Yield strength	Noi	minal thickness (mm)	Values	s (MPa)	
	>	≤	m	nin	
		16	3	55	
	16	40	-	45	
	40	63	3	35	
	63	80	3	25	
	80	100	3	15	
	100	140		95	
Tensile strength	No	minal thickness (mm)	Values	s (MPa)	
	>	≤	min	max	
	=3	100	470	630	
	100	140	450	600	
Elongation	Noi	minal thickness (mm)	Values (%)		
	>	≤		nin	EN 10025-1:2004
	=3	40		22	
	40	63		21	
	63	100		20	
	100	140		18	
Impact strength		minal thickness (mm)		es (J)	
	>	≤		nin	
		140		-20℃	
Weldability		minal thickness (mm)		es (%)	
	>	≤		nax	
		30		,45	
	30	40		,47	
	40	140		,47	
Durability		minal thickness (mm)		es (%)	
(Chemical composition)	>	≤		nax	
		140	C*: 0,20	Cu: 0,55	
			Si : 0,55	S: 0,030	
	*	inal thickness > 30 mm C: 0,22. For	Mn : 1,60	P: 0,030	
	Fully kille	d steel containing nitrogen binding e ple min. 0,02% AI)			

(according to regulation EU No 305/2011)

No. AMDG-2/10-CPR-13-1

1) Code of the product type: **1.0596**

2) Type: Sections/Bars S355K2 according EN 10025-2

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Essential characteristic			Per	formance	Harmonised technical specification
Tolerances on		Angles	EN10056-2		
dimensions and shape		I and H sections	E	N 10034	
		Tapered Flange I	Е	N 10024	
		UPE, UPN	Е	N 10279	
	Flat /	Square / Round / T bars	EN 10058/EN 100	059/EN 10060/EN 10055	
Yield strength	Nor	ninal thickness (mm)	Valu	ues (MPa)	
	>	≤		min	
		16		355	
	16	40		345	
	40	63		335	
	63	80		325	
	80	100		315	
	100	140		295	
Tensile strength	Nor	ninal thickness (mm)	Valu	ues (MPa)	
	^	≤	min	max	
	=3	100	470	630	
	100	140	450	600	
Elongation	Nor	ninal thickness (mm)	Va	lues (%)	
	>	≤	min		EN 10025-1:2004
	=3	40		22	
	40	63		21	
	63	100		20	
	100	140		18	
Impact strength		ninal thickness (mm)	Va	alues (J)	
	>	≤		min	
		140		at -20℃	
Weldability		ninal thickness (mm)	Va	llues (%)	
	>	≤		max	
		30		0,45	
	30	40		0,47	
	40	140	0,47		
Durability	Nor	ninal thickness (mm)	Va	lues (%)	
(Chemical composition)	>	≤		max	
		140	C*: 0,20	Cu : 0,55	
			Si: 0,55	S: 0,030	
	* -	1411 00 000	Mn : 1,60	P:0,030	
	Fully killed	inal thickness > 30 mm C: 0,22. For d steel containing nitrogen binding on the min. 0,02% AI)			

(according to regulation EU No 305/2011)

No. AMDG-4/01-CPR-13-1

1) Code of the product type: **1.8818**

2) Type: Sections/Bars S275M according EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk
Head of Quality Control –

anner y

Essential characteristic				Performanc	e	Harmonised technical specification
Tolerances on		Angles		EN10056-2		
dimensions and shape		I and H sections		EN 10034		
		Tapered Flange I		EN 10024		
		UPE, UPN		EN 10279		
	Flat /	Square / Round / T bars	EN 10058/E		0060/EN 10055	
Yield strength	Noi	minal thickness (mm)		Values (MPa	a)	
	>	≤		min		
		16		275		
	16	40		265		
	40	63		255		
	63	80		245		
	80	100		245		
	100	140		240		
Tensile strength		minal thickness (mm)	ļ	Values (MPa	•	
	>	≤	min		max	
		40	370		530	
	40	63	360		520	
	63	80	350		510	
	80	100	350		510	
=	100	140	350	14 1 (04)	510	
Elongation		minal thickness (mm)	Values (%)		EN 10025-1:2004	
	>	≤	1	min		
Impact strength	No	140 minal thickness (mm)		24 Values (J)		
impact strength	>	ililiai tilickness (ililii) ≤	values (J) min			
		140		40 at -20℃		
Weldability	No	minal thickness (mm)		Values (%)		
veluability	>			max		
		16		0,34		
	16	40		0,34		
	40	63		0,35		
	63	140		0,38		
Durability		minal thickness (mm)		Values (%)		
(Chemical composition)	>	≤	min	· · · · ·	nax	
, ,		140		C:0,15	Ti : 0,05	
				Mn : 1,50	Cr : 0,30	
				Si: 0,50	Mo: 0,10	
				P: 0,035	Ni: 0,30	
				S: 0,030	Cu: 0,55	
				Nb : 0,05	N:0,015	
			A 14 - 2 - 2 - 2	V : 0,08		
	* If ouffici	ent other nitrogen binding elements	Al* : 0,02	nimum aluminium	equirement door	
	not apply		are present, the mi	ı ını ıurı alurnınıum I	equirement aces	

(according to regulation EU No 305/2011)

No. AMDG-4/02-CPR-13-1

1) Code of the product type: **1.8819**

2) Type: Sections/Bars S275ML according EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436 Institution for Research and Certification (ZETOM) performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk
Head of Quality Control –

Essenti	Essential characteristic			Performance	,	Harmonised technical specification
Tolerances on		Angles		EN10056-2		
dimensions and shape		I and H sections		EN 10034		
		Tapered Flange I		EN 10024		
		UPE, UPN		EN 10279		
	Flat /	Square / Round / T bars	EN 10058/EI	N 10059/EN 10	060/EN 10055	
Yield strength	Nor	minal thickness (mm)		Values (MPa)		
	>	≤		min		
1		16		275		
	16	40		265		
	40	63		255		
	63	80		245		
	80	100		245		
	100	140		240		
Tensile strength		minal thickness (mm)		Values (MPa)		
	>	≤	min		max	
		40	370		530	
	40	63	360		520	
	63	80	350		510	
	80	100	350		510	
	100	140	350		510	
Elongation	Nominal thickness (mm)		Values (%)		EN 10025-1:2004	
	>	≤		min		LIV 10025-1.2004
		140		24		
Impact strength	Nominal thickness (mm)		Values (J)			
	>	≤		min		
NAV 1 1 1 1111		140	1	27 at -50℃		
Weldability		minal thickness (mm)	1	Values (%)		
	>	≤		max		
	40	16		0,34		
	16	40		0,34		
	40	63		0,35		
Demak iliter	63	140 minal thickness (mm)		0,38		
Durability (Chemical composition)				Values (%)		
(Chemical composition)	>	<u>≤</u>	min	m:		
		140		C : 0,15 Mn : 1,50	Ti: 0,05 Cr: 0,30	
				Si: 0,50	Mo: 0,10	
				P: 0,030	Ni : 0,30	
				S: 0,025	Cu: 0,55	
				Nb : 0,05	N: 0,015	
				V : 0,08	-,	
			Al* : 0,02			
	* If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does					
	not apply					

(according to regulation EU No 305/2011)

No. AMDG-4/03-CPR-13-1

1) Code of the product type: **1.8823**

2) Type: Sections/Bars S355M according EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92
41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66
Fax:+48 32 776 82 00
www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Mideely

Name	Essenti	Performance			Harmonised technical specification		
Taple Fland Flan		Angles		EN10056-2			
Tell	dimensions and shape	•					
Tell			Tapered Flange I				
Values (MPa)			UPE, UPN				
S S min		•					
16	Yield strength			Values (MPa)			
16		>	≤	min			
Head			16				
Residence		_		345			
Rominal thickness (mm) Values (MPa)							
Tensile strength				325			
Nominal thickness (mm)							
S S Min Max 40 63 450 610 63 80 440 600 80 100 440 600 100 140 430 590							
40	Tensile strength		<u> </u>		Values (MPa		
40		>					
63							
80							
Too							
Nominal thickness (mm)							
Nominal thickness (mm) Values (J)				430		590	
Mominal thickness (mm) Values (J)	Elongation					EN 10025-1:2004	
Nominal thickness (mm) Values (J)		>					LIV 10020 1.2004
S S Min M							
Nominal thickness (mm) Values (%)	Impact strength						
Nominal thickness (mm) Values (%)		-					
S S Max 16	M/-1 /-1 /12/	NI					
16	Weldability			` /			
16		>					
40 63 0,40		16		·			
Durability (Chemical composition) Nominal thickness (mm) Values (%)		_		,			
Durability Nominal thickness (mm) Values (%) S Min max Min max Min				-, -			
(Chemical composition) S	Durability			+			
140 C:0,16 Ti:0,05 Mn:1,60 Cr:0,30 Si:0,50 Mo:0,10 P:0,035 Ni:0,50 S:0,030 Cu:0,55 Nb:0,05 Nb:0,05 V:0,10 Al*:0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does							
Mn: 1,60	(Shormodi Gorriposition)			111111			
Si: 0,50 Mo: 0,10 P: 0,035 Ni: 0,50 S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does			140				
P: 0,035 Ni: 0,50 S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does							
S: 0,030 Cu: 0,55 Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does						,	
Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does						,	
Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does							
* If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does					,	,	
		* If sufficie	ent other nitrogen binding elements	are present, the mi	nimum aluminium re	equirement does	

(according to regulation EU No 305/2011)

No. AMDG-4/04-CPR-13-1

1) Code of the product type: **1.8834**

2) Type: Sections/Bars S355ML according EN 10025-4

Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded, bolted and riveted structures

3) ArcelorMittal Poland S.A. al. J. Piłsudskiego 92 41-308 Dąbrowa Górnicza - Poland Tel: +48 32 776 66 66 Fax:+48 32 776 82 00 www.arcelormittal.com/sections

System of assessment and verification of constancy of performance of the product:

System 2+

Notified factory production control certification body No. 1436
Institution for Research and Certification (ZETOM) performed
the initial inspection of the manufacturing plant and of factory
production control and the continuous surveillance,
assessment, and evaluation of factory production control and
issued the certificate of conformity of the factory production
control.

The performance of the product identified in points 1 and 2 is in conformity with the declared performance in the table.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Bogdan Mikołajczyk Executive Director – Longs Wojciech Michalczyk Head of Quality Control –

Mideely

Name	Essenti	Performance			Harmonised technical specification		
Taple Fland Flan		Angles		EN10056-2			
Tell	dimensions and shape		I and H sections				
Tell			Tapered Flange I				
Values (MPa)			UPE, UPN				
S S min		•					
16	Yield strength			Values (MPa)			
16		>	≤	min			
Head	1		16				
Residence		_		345			
Rominal thickness (mm) Values (MPa)							
Tensile strength				325			
Nominal thickness (mm)							
S S Min Max 40 63 450 610 63 80 440 600 80 100 125 430 590 Nominal thickness (mm) Values (%) > S Min 140 22 Min 140 27 at -50°C Weldability Nominal thickness (mm) Values (%) > S Min 16 40 0,39 40 63 0,40 63 140 0,45 Durability (Chemical composition) 140 Min Min Nominal thickness (mm) Values (%) > S Min Min 16 40 0,39 16 40 0,45 16 40 0,45 17 17 17 Nominal thickness (mm) Values (%) > S Min Min 140 C : 0,16 Ti : 0,05 Min : 1,60 Cr : 0,30 Si : 0,50 Mo : 0,10 P : 0,030 Ni : 0,50 S : 0,025 Cu : 0,55 Nb : 0,05 N : 0,015 V : 0,10 Mir : equirement does							
40	Tensile strength		` '		Values (MPa		
40	<u>.</u>	>					
63							
80							
Too 125 430 590							
Nominal thickness (mm)							
Nominal thickness (mm) Values (J)				430		590	
Mominal thickness (mm)	Elongation					EN 10025-1:2004	
Nominal thickness (mm) Values (J)		>				LIV 10020 1.2004	
S S Min M		1					
Nominal thickness (mm) Values (%)	Impact strength						
Nominal thickness (mm) Values (%)		-					
S S Max	W-1.1-1.195.	N					
16	Weldability			` ,			
16		>					
40 63 0,40		16		·			
Durability (Chemical composition) Nominal thickness (mm) Values (%)		_		,			
Durability Nominal thickness (mm) Values (%) S Min max Min max Min				-, -			
(Chemical composition) S	Durability			+			
140 C:0,16 Ti:0,05 Mn:1,60 Cr:0,30 Si:0,50 Mo:0,10 P:0,030 Ni:0,50 S:0,025 Cu:0,55 Nb:0,05 N:0,015 V:0,10 Al*:0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does							
Mn: 1,60	(Shormodi Gorriposition)			111111			
Si: 0,50 Mo: 0,10 P: 0,030 Ni: 0,50 S: 0,025 Cu: 0,55 Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does			140				
P: 0,030 Ni: 0,50 S: 0,025 Cu: 0,55 Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does							
S: 0,025 Cu: 0,55 Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does						,	
Nb: 0,05 N: 0,015 V: 0,10 Al*: 0,02 * If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does						,	
* If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does							
* If sufficient other nitrogen binding elements are present, the minimum aluminium requirement does					,	•	
		* If sufficient	ent other nitrogen binding elements	are present, the mi	nimum aluminium r	equirement does	